IoT Security Concerns with Non-Fungible Tokens: A Review
Ashwag Alotaibi ;
Huda Aldawghan ;
M. M. Hafizur Rahman
Published: 2026
Abstract
This study summarizes the body of research on the IoT and NFTs overlap, highlighting important security concerns, the function of blockchain technology, and implications for future study and smart environment applications. IoT devices provide creative solutions that boost operational effectiveness and enhance user experiences as they spread throughout different sectors. But there are also serious drawbacks to this expansion, especially in terms of security and privacy. At the same time, NFTs unique digital assets verified by blockchain technology—have become extremely popular because of their unique features and wide range of uses. This paper carefully looks at how security frameworks in digital ecosystems may be impacted by the integration of IoT and NFTs. The results emphasize how urgently this integration must be studied further to minimize new risks and maximize the advantages of IoT and NFTs across a variety of sectors. The study intends to contribute to a more secure and effective IoT ecosystem by examining the difficulties presented by this integration. Contributing to the development of a more robust and secure IoT ecosystem is the ultimate aim of this research. This study aims to open the door for future developments that optimize the benefits between the two technologies while reducing risks by recognizing and evaluating the difficulties brought about by the integration of IoT and NFTs. Both academics and industry stakeholders navigating the rapidly changing IoT and blockchain world will find great significance in the results of this research.
Keywords
IoT Security Concerns with Non-Fungible Tokens: A Review is licensed under CC BY 4.0
References
- Ananna, T. N., & Saifuzzaman, M. (2023). Introduction to IoT. arXiv. https://arxiv.org/abs/2312.06689
- Mouha, R. A. R. A., et al. (2021). Internet of things (IoT). Journal of Data Analysis and Information Processing, 9, 77.
- Chataut, R., Phoummalayvane, A., & Akl, R. (2023). Unleashing the power of IoT: A comprehensive review of IoT applications and future prospects in healthcare, agriculture, smart homes, smart cities, and industry 4.0. Sensors, 23, 7194.
- Kumar, S., Tiwari, P., & Zymbler, M. (2019). Internet of Things is a revolutionary approach for future technology enhancement: A review. Journal of Big Data, 6, 1–21.
- Elgazzar, K., Khalil, H., Alghamdi, T., Badr, A., Abdelkader, G., Elewah, A., & Buyya, R. (2022). Revisiting the Internet of Things: New trends, opportunities and grand challenges.
- Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of IoT for better financial growth and stability: A comprehensive survey. Sensors, 23, 8015.
- Mazhar, T., Talpur, D. B., Shloul, T. A., Ghadi, Y. Y., Haq, I., Ullah, I., Ouahada, K., & Hamam, H. (2023). Analysis of IoT security challenges and its solutions using artificial intelligence. Brain Sciences, 13, 683.
- Serror, M., Hack, S., Henze, M., Schuba, M., & Wehrle, K. (2020). Challenges and opportunities in securing the industrial Internet of Things. IEEE Transactions on Industrial Informatics, 17, 2985–2996.
- Laghari, A. A., Wu, K., Laghari, R. A., Ali, M., & Khan, A. A. (2021). A review and state of art of Internet of Things (IoT). Archives of Computational Methods in Engineering, 1–19.
- Taherdoost, H. (2022). Non-fungible tokens (NFT): A systematic review. Information, 14, 26.
- Hammi, B., Zeadally, S., & Perez, A. J. (2023). Non-fungible tokens: A review. IEEE Internet of Things Magazine, 6, 46–50.
- Elzweig, B., & Trautman, L. J. (2022). When does a non-fungible token (NFT) become a security? Georgia State University Law Review, 39, 295.
- El-Sofany, H., El-Seoud, S. A., Karam, O. H., & Bouallegue, B. (2024). Using machine learning algorithms to enhance IoT system security. Scientific Reports, 14, 12077.
- Zhao, J., Hu, H., Huang, F., Guo, Y., & Liao, L. (2023). Authentication technology in Internet of Things and privacy security issues in typical application scenarios. Electronics, 12, 1812.
- Baho, S. A., & Abawajy, J. (2023). Analysis of consumer IoT device vulnerability quantification frameworks. Electronics, 12, 1176.
- Rana, M., Mamun, Q., & Islam, R. (2023). Enhancing IoT security: An innovative key management system for lightweight block ciphers. Sensors, 23, 7678.
- Bakhshi, T., Ghita, B., & Kuzminykh, I. (2024). A review of IoT firmware vulnerabilities and auditing techniques. Sensors, 24, 708.
- Hindka, M. (2024). Securing the digital backbone: In-depth insights into API security patterns and practices.
- Tariq, U., Ahmed, I., Bashir, A. K., & Shaukat, K. (2023). A critical cybersecurity analysis and future research directions for the Internet of Things: A comprehensive review. Sensors, 23, 4117.
- Yang, X., Shu, L., Liu, Y., Hancke, G. P., Ferrag, M. A., & Huang, K. (2022). Physical security and safety of IoT equipment: A survey of recent advances and opportunities. IEEE Transactions on Industrial Informatics, 18, 4319–4330.
- Shah, Y., & Sengupta, S. (2020). A survey on classification of cyber-attacks on IoT and IIoT devices. In 2020 11th IEEE UEMCON (pp. 406–413). IEEE.
- Yaacoub, J. P. A., Salman, O., Noura, H. N., Kaaniche, N., Chehab, A., & Malli, M. (2020). Cyber-physical systems security: Limitations, issues and future trends. Microprocessors and Microsystems, 77, 103201.
- Abdul-Ghani, H. A., & Konstantas, D. (2019). A comprehensive study of security and privacy guidelines, threats, and countermeasures: An IoT perspective. Journal of Sensor and Actuator Networks, 8, 22.
- Zhang, J., Rajendran, S., Sun, Z., Woods, R., & Hanzo, L. (2019). Physical layer security for the Internet of Things: Authentication and key generation. IEEE Wireless Communications, 26, 92–98.
- Mishra, N., & Pandya, S. (2021). Internet of Things applications, security challenges, attacks, intrusion detection, and future visions: A systematic review. IEEE Access, 9, 59353–59377.
- Tawalbeh, L., Muheidat, F., Tawalbeh, M., & Quwaider, M. (2020). IoT privacy and security: Challenges and solutions. Applied Sciences, 10, 4102.
- Karie, N. M., Sahri, N. M., Yang, W., Valli, C., & Kebande, V. R. (2021). A review of security standards and frameworks for IoT-based smart environments. IEEE Access, 9, 121975–121995.
- HaddadPajouh, H., Dehghantanha, A., Parizi, R. M., Aledhari, M., & Karimipour, H. (2021). A survey on Internet of Things security: Requirements, challenges, and solutions. Internet of Things, 14, 100129.
- Srivastava, A., Gupta, S., Quamara, M., Chaudhary, P., & Aski, V. J. (2020). Future IoT-enabled threats and vulnerabilities: State of the art, challenges, and future prospects. International Journal of Communication Systems, 33, e4443.
- Anand, P., Singh, Y., Selwal, A., Singh, P. K., Felseghi, R. A., & Raboaca, M. S. (2020). IOVT: Internet of vulnerable things? Threat architecture, attack surfaces, and vulnerabilities in IoT and its applications towards smart grids. Energies, 13, 4813.
- Menard, P., & Bott, G. J. (2020). Analyzing IoT users’ mobile device privacy concerns: Extracting privacy permissions using a disclosure experiment. Computers & Security, 95, 101856.
- Chang, K. C., Niu, H., Kim, B., & Barber, S. (2024). IoT privacy risks revealed. Entropy, 26, 561.
- Hejase, H. J., Fayyad-Kazan, H. F., & Moukadem, I. (2020). Advanced persistent threats (APT): An awareness review. Journal of Economics and Economic Education Research, 21, 1–8.
- Sahu, S. K., & Mazumdar, K. (2024). Exploring security threats and solutions techniques for Internet of Things (IoT): From vulnerabilities to vigilance. Frontiers in Artificial Intelligence, 7, 1397480.
- Bhujel, S., & Rahulamathavan, Y. (2022). A survey: Security, transparency, and scalability issues of NFTs and its marketplaces. Sensors, 22, 8833.
- Wang, Q., Li, R., Wang, Q., & Chen, S. (2021). Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv.
- Madine, M., Salah, K., Jayaraman, R., & Zemerly, J. (2023). NFTs for open-source and commercial software licensing and royalties. IEEE Access, 11, 8734–8746.
- Madine, M., Salah, K., Jayaraman, R., Battah, A., Hasan, H., & Yaqoob, I. (2022). Blockchain and NFTs for time-bound access and monetization of private data. IEEE Access, 10, 94186–94202.
- Habib, G., Sharma, S., Ibrahim, S., Ahmad, I., Qureshi, S., & Ishfaq, M. (2022). Blockchain technology: Benefits, challenges, applications, and integration with cloud computing. Future Internet, 14, 341.
- Das, D., Bose, P., Ruaro, N., Kruegel, C., & Vigna, G. (2022). Understanding security issues in the NFT ecosystem. In ACM CCS 2022 (pp. 667–681).
- Ali, O., Momin, M., Shrestha, A., Das, R., Alhajj, F., & Dwivedi, Y. K. (2023). A review of the key challenges of non-fungible tokens. Technological Forecasting and Social Change, 187, 122248.
- Li, L. (2024). Mitigating challenges in Ethereum’s proof-of-stake consensus: Evaluating the impact of EigenLayer and Lido. arXiv.
- Rožman, N., Corn, M., Škulj, G., Berlec, T., Diaci, J., & Podržaj, P. (2023). Exploring the effects of blockchain scalability limitations on performance and user behavior in blockchain-based shared manufacturing systems. Applied Sciences, 13, 4251.
- Arcenegui, J., Arjona, R., Román, R., & Baturone, I. (2021). Secure combination of IoT and blockchain by physically binding IoT devices to smart non-fungible tokens using PUFs. Sensors, 21, 3119.
- Khalil, U., Malik, O. A., Hong, O. W., & Uddin, M. (2023). Leveraging a novel NFT-enabled blockchain architecture for the authentication of IoT assets in smart cities. Scientific Reports, 13, 19785.
- Gupta, M. (2023). Integration of IoT and Blockchain for user authentication.
- Tripathi, G., Ahad, M. A., & Casalino, G. (2023). A comprehensive review of blockchain technology: Underlying principles and historical background with future challenges. Decision Analytics Journal, 100344.
- Justinia, T. (2019). Blockchain technologies: Opportunities for solving real-world problems in healthcare and biomedical sciences. Acta Informatica Medica, 27, 284.
- Haque, E. U., Shah, A., Iqbal, J., Ullah, S. S., Alroobaea, R., & Hussain, S. (2024). A scalable blockchain-based framework for efficient IoT data management using lightweight consensus. Scientific Reports, 14, 7841.
- Sandner, P., Gross, J., & Richter, R. (2020). Convergence of blockchain, IoT, and AI. Frontiers in Blockchain, 3, 522600.
- George, I. (2024). Exploring the integration of blockchain in IoT use cases: Challenges and opportunities.
- Alizadeh, S., Setayesh, A., Mohamadpour, A., & Bahrak, B. (2023). A network analysis of the non-fungible token (NFT) market: Structural characteristics, evolution, and interactions. Applied Network Science, 8, 38.
- Tan, Y., Wu, Z., Liu, J., Wu, J., Zheng, Z., & Chen, T. (2023). Bubble or not: Measurements, analyses, and findings on the Ethereum ERC721 and ERC1155 NFT ecosystem. arXiv.
- Taherdoost, H. (2023). Security and Internet of Things: Benefits, challenges, and future perspectives. Electronics, 12, 1901.
- Jurcut, A., Niculcea, T., Ranaweera, P., & Le-Khac, N. A. (2020). Security considerations for Internet of Things: A survey. SN Computer Science, 1, 1–19.
- Rekha, S., Thirupathi, L., Renikunta, S., & Gangula, R. (2023). Study of security issues and solutions in Internet of Things (IoT). Materials Today: Proceedings, 80, 3554–3599.
- Williams, P., Dutta, I. K., Daoud, H., & Bayoumi, M. (2022). A survey on security in Internet of Things with a focus on emerging technologies. Internet of Things, 19, 100564.
- Parry, G., & Ellul, J. (2024). NFTs and self-sovereign identity: Opportunities and challenges. Authorea Preprints.
- Al-Sumaidaee, G., & Žilić, Ž. (2024). Sensing data concealment in NFTs: A steganographic model for confidential cross-border information exchange. Sensors, 24, 1264.
- Zelenyanszki, D., Hóu, Z., Biswas, K., & Muthukkumarasamy, V. (2023). Linking NFT transaction events to identify privacy risks. In International Symposium on Distributed Ledger Technology (pp. 82–97). Springer.
- Gupta, Y., Kumar, J., & Reifers, A. (2022). Identifying security risks in NFT platforms. arXiv.
- Humayun, M., Jhanjhi, N., Alsayat, A., & Ponnusamy, V. (2021). Internet of Things and ransomware: Evolution, mitigation and prevention. Egyptian Informatics Journal, 22, 105–117.
- Oz, H., Aris, A., Levi, A., & Uluagac, A. S. (2022). A survey on ransomware: Evolution, taxonomy, and defense solutions. ACM Computing Surveys, 54, 1–37.
- Fereidouni, H., Fadeitcheva, O., & Zalai, M. (2023). IoT and man-in-the-middle attacks. arXiv.
- Ali, M. H., Jaber, M. M., Abd, S. K., Rehman, A., Awan, M. J., Damaševičius, R., & Bahaj, S. A. (2022). Threat analysis and DDoS attack recognition in the Internet of Things (IoT). Electronics, 11, 494.
- Khatiwada, P., Yang, B., Lin, J. C., Mugurusi, G., & Underbekken, S. (2024). A reference design model to manage consent in data-subject-centered Internet of Things devices. IoT, 5, 100–122.
- Nunes, T., da Cunha, P. R., de Abreu, J. M., Duarte, J., & Corte-Real, A. (2024). Non-fungible tokens (NFTs) in healthcare: A systematic review. International Journal of Environmental Research and Public Health, 21, 965.
- Esmaeilzadeh, P., et al. (2023). Evolution of health information sharing between healthcare organizations: Potential of nonfungible tokens. Interactive Journal of Medical Research, 12, e42685.
- Barati, M., Rana, O., Petri, I., & Theodorakopoulos, G. (2020). GDPR compliance verification in Internet of Things. IEEE Access, 8, 119697–119709.
- Arabsorkhi, A., & Khazaei, E. (2024). Blockchain technology and GDPR compliance: A comprehensive applicability model. International Journal of Web Research, 7, 49–63.
- Delgado-von Eitzen, C., Anido-Rifón, L., & Fernández-Iglesias, M. J. (2024). NFTs for the issuance and validation of academic information that complies with the GDPR. Applied Sciences, 14, 706.
- Sedlmeir, J., Lautenschlager, J., Fridgen, G., & Urbach, N. (2022). The transparency challenge of blockchain in organizations. Electronic Markets, 32, 1779–1794.
- de Haro-Olmo, F. J., Varela-Vaca, Á. J., & Álvarez-Bermejo, J. A. (2020). Blockchain from the perspective of privacy and anonymisation: A systematic literature review. Sensors, 20, 7171.
- Cornelius, K. (2021). Betraying blockchain: Accountability, transparency and document standards for NFTs. Information, 12, 358.
- Burleson, J., Korver, M., & Boneh, D. (2022). Privacy-protecting regulatory solutions using zero-knowledge proofs.
- Bernabe, J. B., Canovas, J. L., Hernandez-Ramos, J. L., Moreno, R. T., & Skarmeta, A. (2019). Privacy-preserving solutions for blockchain: Review and challenges. IEEE Access, 7, 164908–164940.
- Ruffner, J. (2024). Investigating user awareness of privacy and security concerns in the IoT era.
- Schrama, V., Gañán, C. H., Aschenbrenner, D., de Reuver, M., Borgolte, K., & Fiebig, T. (2020). Understanding the knowledge gap: How security awareness influences the adoption of industrial IoT. In WEIS 2020 (pp. 1–17).
- Lee, I. (2020). Internet of Things (IoT) cybersecurity: Literature review and IoT cyber risk management. Future Internet, 12, 157.
- Ahmed, S., & Khan, M. (2023). Securing the Internet of Things (IoT): A comprehensive study on the intersection of cybersecurity, privacy, and connectivity. AI, IoT and the Fourth Industrial Revolution Review, 13, 1–17.
- Banaeian Far, S., & Hosseini Bamakan, S. M. (2023). NFT-based identity management in metaverses: Challenges and opportunities. SN Applied Sciences, 5, 260.