Enhancing Intrusion Detection Systems by Using Machine Learning in Smart Cities: Issues, Challenges and Future Research Direction
Rasha Almarshood ;
M. M. Hafizur Rahman
Published: 2025/05/25
Abstract
With promising innovation and efficiency in smart city, it is still facing a growing threat of cyberattacks. The increasing interconnectedness of digital services makes these cities particularly vulnerable. Traditional security measures struggle to adapt to evolving threats. Due to the insufficient analysis of real-time attack patterns. Emerging new technologies are crucial for managing these issues. Machine Learning (ML) is a promising solution to enhance Intrusion Detection Systems (IDS). ML can effectively detect malicious activities. ML provides automation of network traffic analysis and anomalous pattern identification. This paper presents a systematic literature review to explore the potential of ML in improving IDS for smart city. Various ML approaches and specific applications in smart city services will be investigated. We will evaluate the effectiveness of existing approaches in smart city. Identifying key challenges and future research directions. We also aim to contribute to the development of smart city security systems. It will benefit critical infrastructures to be more robust and resilient against evolving threats.
Keywords
Enhancing Intrusion Detection Systems by Using Machine Learning in Smart Cities: Issues, Challenges and Future Research Direction is licensed under CC BY 4.0
References
- Jan, M. A., He, X., Song, H., & Babar, M. (2021). Editorial: Machine learning and big data analytics for IoT-enabled smart cities. Mobile Networks and Applications, 26(1), 156–158. https://doi.org/10.1007/s11036-020-01702-4
- Bukhari, O., Agarwal, P., Koundal, D., & Zafar, S. (2023). Anomaly detection using ensemble techniques for boosting the security of intrusion detection system. Procedia Computer Science, 218, 1003–1013. https://doi.org/10.1016/j.procs.2023.01.080
- Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. (2023). Intrusion detection system using feature extraction with machine learning algorithms in IoT. Journal of Sensor and Actuator Networks, 12(2), 29. https://doi.org/10.3390/jsan12020029
- Abdallah, E. E., Eleisah, W., & Otoom, A. F. (2022). Intrusion detection systems using supervised machine learning techniques: A survey. Procedia Computer Science, 201, 205–212. https://doi.org/10.1016/j.procs.2022.03.029
- Zakaria, R., Abdelmajid, H., & Zitouni, D. (2022). Deep learning in medical imaging: A review. In CRC Press eBooks (pp. 131–144). https://doi.org/10.1201/9781003269793-15
- Vanin, P., Newe, T., Dhirani, L. L., O’Connell, E., O’Shea, D., Lee, B., & Rao, M. (2022). A study of network intrusion detection systems using artificial intelligence/machine learning. Applied Sciences, 12(22), 11752. https://doi.org/10.3390/app122211752
- N, T. R., & Gupta, R. (2021). Design and development of an efficient network intrusion detection system using machine learning techniques. Wireless Communications and Mobile Computing, 2021, Article 9974270. https://doi.org/10.1155/2021/9974270
- Aljanabi, M., Ismail, M. A., & Ali, A. H. (2021). Intrusion detection systems, issues, challenges, and needs. International Journal of Computational Intelligence Systems, 14(1), 560. https://doi.org/10.2991/ijcis.d.210105.001
- Mehmood, Y., Habiba, U., Shibli, M. A., & Masood, R. (2013). Intrusion detection system in cloud computing: Challenges and opportunities.
- Celdrán, A. H., Sánchez, P. M. S., Castillo, M. A., Bovet, G., Pérez, G. M., & Stiller, B. (2022). Intelligent and behavioral-based detection of malware in IoT spectrum sensors. International Journal of Information Security, 22(4), 541–561. https://doi.org/10.1007/s10207-022-00602-w
- Johnson, J., Jones, C. B., Chavez, A., & Hossain-McKenzie, S. (2023). SOAR4DER: Security orchestration, automation, and response for distributed energy resources. In Distributed Energy Resources (pp. 387–411). Springer. https://doi.org/10.1007/978-3-031-20360-2_16
- Sarker, I. H. (2022). Machine learning for intelligent data analysis and automation in cybersecurity: Current and future prospects. Annals of Data Science, 10, 1473–1498. https://doi.org/10.1007/s40745-022-00444-2
- Jogin, M., Manjunath, M., & others. (2018). Feature extraction using convolution neural networks (CNN) and deep learning. In IEEE Conference Publication. IEEE.
- Akinola, O., Akinola, A., Ifeanyi, I., Adewole, O., Sulaimon, B., & Oyekan, B. (2024). Artificial intelligence and machine learning techniques for anomaly detection and threat mitigation in cloud-connected medical devices. International Journal of Scientific Research and Modern Technology, 3(3), 1–13. https://doi.org/10.38124/ijsrmt.v3i3.26
- Lesouple, J., Baudoin, C., Spigai, M., & Tourneret, J. Y. (2021). Generalized isolation forest for anomaly detection. Pattern Recognition Letters, 149, 109–119. https://doi.org/10.1016/j.patrec.2021.05.022
- Togbe, M. U., Barry, M., Boly, A., Chabchoub, Y., Chiky, R., Montiel, J., & Tran, V. T. (2020). Anomaly detection for data streams based on isolation forest using Scikit-Multiflow. In Advances in Intelligent Systems and Computing (pp. 15–30). Springer. https://doi.org/10.1007/978-3-030-58811-3_2
- Alavizadeh, H., Alavizadeh, H., & Jang-Jaccard, J. (2022). Deep Q-learning based reinforcement learning approach for network intrusion detection. Computers, 11(3), 41. https://doi.org/10.3390/computers11030041
- Gronauer, S., & Diepold, K. (2021). Multi-agent deep reinforcement learning: A survey. Artificial Intelligence Review, 55, 895–943. https://doi.org/10.1007/s10462-021-09996-w
- Wang, Y., & Zou, S. (2022). Policy gradient method for robust reinforcement learning.
- Ali, W. A., N, M. K., Aljunid, M., Bendechache, M., & Sandhya, P. (2020). Review of current machine learning approaches for anomaly detection in network traffic. Journal of Telecommunications and the Digital Economy, 8(4), 64–95. https://doi.org/10.18080/jtde.v8n4.307
- Duong, H. T., Le, V. T., & Hoang, V. T. (2023). Deep learning-based anomaly detection in video surveillance: A survey. Sensors, 23(11), 5024. https://doi.org/10.3390/s23115024
- Ullah, A., Anwar, S. M., Li, J., Nadeem, L., Mahmood, T., Rehman, A., & Saba, T. (2023). Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intelligent Systems, 10(3), 1607–1637. https://doi.org/10.1007/s40747-023-01175-4
- Amović, M., Govedarica, M., Radulović, A., & Janković, I. (2021). Big data in smart city: Management challenges. Applied Sciences, 11(10), 4557. https://doi.org/10.3390/app11104557
- Cesario, E. (2023). Big data analytics and smart cities: Applications, challenges, and opportunities. Frontiers in Big Data, 6, 1149402. https://doi.org/10.3389/fdata.2023.1149402
- Nuaimi, E. A., Neyadi, H. A., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 25. https://doi.org/10.1186/s13174-015-0041-5
- Brahim, M. B., Drira, W., Filali, F., & Hamdi, N. (2016). Spatial data extension for Cassandra NoSQL database. Journal of Big Data, 3(1), 11. https://doi.org/10.1186/s40537-016-0045-4
- Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a recurrent neural networks based framework. Computer Communications, 199, 113–125. https://doi.org/10.1016/j.comcom.2022.12.010
- Xu, H., Sun, Z., Cao, Y., & Bilal, H. (2023). A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things. Soft Computing, 27, 14469–14481. https://doi.org/10.1007/s00500-023-09037-4
- Campos, E. M., Saura, P. F., González-Vidal, A., Hernández-Ramos, J. L., Bernabé, J. B., Baldini, G., & Skarmeta, A. (2022). Evaluating federated learning for intrusion detection in Internet of Things: Review and challenges. Computer Networks, 203, 108661. https://doi.org/10.1016/j.comnet.2021.108661
- Hossain, M. A., & Islam, M. S. (2023). Ensuring network security with a robust intrusion detection system using ensemble-based machine learning. Array, 19, 100306. https://doi.org/10.1016/j.array.2023.100306
- Disha, R. A., & Waheed, S. (2022). Performance analysis of machine learning models for intrusion detection system using Gini impurity-based weighted random forest (GIWRF) feature selection technique. Cybersecurity, 5, 1. https://doi.org/10.1186/s42400-021-00103-8
- Yaras, S., & Dener, M. (2024). IoT-based intrusion detection system using new hybrid deep learning algorithm. Electronics, 13(6), 1053. https://doi.org/10.3390/electronics13061053
- Hnamte, V., & Hussain, J. (2023). Dependable intrusion detection system using deep convolutional neural network: A novel framework and performance evaluation approach. Telematics and Informatics Reports, 11, 100077. https://doi.org/10.1016/j.teler.2023.100077
- Ashiku, L., & Dagli, C. (2021). Network intrusion detection system using deep learning. Procedia Computer Science, 185, 239–247. https://doi.org/10.1016/j.procs.2021.05.025
- Kayode Saheed, Y., Idris Abiodun, A., Misra, S., Kristiansen Holone, M., & Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting Internet of Things network attacks. Alexandria Engineering Journal, 61(12), 9395–9409. https://doi.org/10.1016/j.aej.2022.02.063
- Awajan, A. (2023). A novel deep learning-based intrusion detection system for IoT networks. Computers, 12(2), 34. https://doi.org/10.3390/computers12020034
- Brahim, M. B., Drira, W., Filali, F., & Hamdi, N. (2016). Spatial data extension for Cassandra NoSQL database. Journal of Big Data, 3(1), 11. https://doi.org/10.1186/s40537-016-0045-4
- Alosaimi, S., & Almutairi, S. M. (2023). An intrusion detection system using BoT-IoT. Applied Sciences, 13(9), 5427. https://doi.org/10.3390/app13095427
- Logeswari, G., Bose, S., & Thangasamy, A. (2023). An intrusion detection system for SDN using machine learning. Intelligent Automation & Soft Computing, 35(1), 867–880. https://doi.org/10.32604/iasc.2023.026769
- Sasi, T., Lashkari, A. H., Lu, R., Xiong, P., & Iqbal, S. (2024). A comprehensive survey on IoT attacks: Taxonomy, detection mechanisms and challenges. Journal of Information and Intelligence, 2(4), 455–513. https://doi.org/10.1016/j.jiixd.2023.12.001
- Sabiri, B., Khtira, A., Asri, B. E., & Rhanoui, M. (2024). Investigating contrastive pair learning’s frontiers in supervised, semisupervised, and self-supervised learning. Journal of Imaging, 10(8), 196. https://doi.org/10.3390/jimaging10080196
- Qiu, L., Jin, L., & Chai, L. (2023). Network traffic prediction based on spatio-temporal graph convolutional network. In Proceedings of the 2023 42nd Chinese Control Conference (CCC) (pp. 8426–8431). IEEE. https://doi.org/10.23919/CCC58697.2023.10239918
- Park, J., Park, Y., & Kim, C. I. (2022). TCAE: Temporal convolutional autoencoders for time series anomaly detection. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 421–426). IEEE. https://doi.org/10.1109/ICUFN55119.2022.9829692
- Zhao, Z., & Chen, M. (2024). Time series anomaly detection and prediction model integrating multimodal data. In Proceedings of the 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1–5). IEEE. https://doi.org/10.1109/IACIS61494.2024.10721738