STAP Journal of Security Risk Management

ISSN: 3080-9444 (Online)

Enhancing Intrusion Detection Systems by Using Machine Learning in Smart Cities: Issues, Challenges and Future Research Direction

by 

Rasha Almarshood ;

M. M. Hafizur Rahman

PDF logoPDF

Published: 2025/05/25

Abstract

With promising innovation and efficiency in smart city, it is still facing a growing threat of cyberattacks. The increasing interconnectedness of digital services makes these cities particularly vulnerable. Traditional security measures struggle to adapt to evolving threats. Due to the insufficient analysis of real-time attack patterns. Emerging new technologies are crucial for managing these issues. Machine Learning (ML) is a promising solution to enhance Intrusion Detection Systems (IDS). ML can effectively detect malicious activities. ML provides automation of network traffic analysis and anomalous pattern identification. This paper presents a systematic literature review to explore the potential of ML in improving IDS for smart city. Various ML approaches and specific applications in smart city services will be investigated. We will evaluate the effectiveness of existing approaches in smart city. Identifying key challenges and future research directions. We also aim to contribute to the development of smart city security systems. It will benefit critical infrastructures to be more robust and resilient against evolving threats.

Keywords

IDSMLSmart CityAnomaly DetectionReal-time Analysis

References

  1. Jan, M. A., He, X., Song, H., & Babar, M. (2021). Editorial: Machine learning and big data analytics for IoT-enabled smart cities. Mobile Networks and Applications, 26(1), 156–158. https://doi.org/10.1007/s11036-020-01702-4
  2. Bukhari, O., Agarwal, P., Koundal, D., & Zafar, S. (2023). Anomaly detection using ensemble techniques for boosting the security of intrusion detection system. Procedia Computer Science, 218, 1003–1013. https://doi.org/10.1016/j.procs.2023.01.080
  3. Musleh, D., Alotaibi, M., Alhaidari, F., Rahman, A., & Mohammad, R. M. (2023). Intrusion detection system using feature extraction with machine learning algorithms in IoT. Journal of Sensor and Actuator Networks, 12(2), 29. https://doi.org/10.3390/jsan12020029
  4. Abdallah, E. E., Eleisah, W., & Otoom, A. F. (2022). Intrusion detection systems using supervised machine learning techniques: A survey. Procedia Computer Science, 201, 205–212. https://doi.org/10.1016/j.procs.2022.03.029
  5. Zakaria, R., Abdelmajid, H., & Zitouni, D. (2022). Deep learning in medical imaging: A review. In CRC Press eBooks (pp. 131–144). https://doi.org/10.1201/9781003269793-15
  6. Vanin, P., Newe, T., Dhirani, L. L., O’Connell, E., O’Shea, D., Lee, B., & Rao, M. (2022). A study of network intrusion detection systems using artificial intelligence/machine learning. Applied Sciences, 12(22), 11752. https://doi.org/10.3390/app122211752
  7. N, T. R., & Gupta, R. (2021). Design and development of an efficient network intrusion detection system using machine learning techniques. Wireless Communications and Mobile Computing, 2021, Article 9974270. https://doi.org/10.1155/2021/9974270
  8. Aljanabi, M., Ismail, M. A., & Ali, A. H. (2021). Intrusion detection systems, issues, challenges, and needs. International Journal of Computational Intelligence Systems, 14(1), 560. https://doi.org/10.2991/ijcis.d.210105.001
  9. Mehmood, Y., Habiba, U., Shibli, M. A., & Masood, R. (2013). Intrusion detection system in cloud computing: Challenges and opportunities.
  10. Celdrán, A. H., Sánchez, P. M. S., Castillo, M. A., Bovet, G., Pérez, G. M., & Stiller, B. (2022). Intelligent and behavioral-based detection of malware in IoT spectrum sensors. International Journal of Information Security, 22(4), 541–561. https://doi.org/10.1007/s10207-022-00602-w
  11. Johnson, J., Jones, C. B., Chavez, A., & Hossain-McKenzie, S. (2023). SOAR4DER: Security orchestration, automation, and response for distributed energy resources. In Distributed Energy Resources (pp. 387–411). Springer. https://doi.org/10.1007/978-3-031-20360-2_16
  12. Sarker, I. H. (2022). Machine learning for intelligent data analysis and automation in cybersecurity: Current and future prospects. Annals of Data Science, 10, 1473–1498. https://doi.org/10.1007/s40745-022-00444-2
  13. Jogin, M., Manjunath, M., & others. (2018). Feature extraction using convolution neural networks (CNN) and deep learning. In IEEE Conference Publication. IEEE.
  14. Akinola, O., Akinola, A., Ifeanyi, I., Adewole, O., Sulaimon, B., & Oyekan, B. (2024). Artificial intelligence and machine learning techniques for anomaly detection and threat mitigation in cloud-connected medical devices. International Journal of Scientific Research and Modern Technology, 3(3), 1–13. https://doi.org/10.38124/ijsrmt.v3i3.26
  15. Lesouple, J., Baudoin, C., Spigai, M., & Tourneret, J. Y. (2021). Generalized isolation forest for anomaly detection. Pattern Recognition Letters, 149, 109–119. https://doi.org/10.1016/j.patrec.2021.05.022
  16. Togbe, M. U., Barry, M., Boly, A., Chabchoub, Y., Chiky, R., Montiel, J., & Tran, V. T. (2020). Anomaly detection for data streams based on isolation forest using Scikit-Multiflow. In Advances in Intelligent Systems and Computing (pp. 15–30). Springer. https://doi.org/10.1007/978-3-030-58811-3_2
  17. Alavizadeh, H., Alavizadeh, H., & Jang-Jaccard, J. (2022). Deep Q-learning based reinforcement learning approach for network intrusion detection. Computers, 11(3), 41. https://doi.org/10.3390/computers11030041
  18. Gronauer, S., & Diepold, K. (2021). Multi-agent deep reinforcement learning: A survey. Artificial Intelligence Review, 55, 895–943. https://doi.org/10.1007/s10462-021-09996-w
  19. Wang, Y., & Zou, S. (2022). Policy gradient method for robust reinforcement learning.
  20. Ali, W. A., N, M. K., Aljunid, M., Bendechache, M., & Sandhya, P. (2020). Review of current machine learning approaches for anomaly detection in network traffic. Journal of Telecommunications and the Digital Economy, 8(4), 64–95. https://doi.org/10.18080/jtde.v8n4.307
  21. Duong, H. T., Le, V. T., & Hoang, V. T. (2023). Deep learning-based anomaly detection in video surveillance: A survey. Sensors, 23(11), 5024. https://doi.org/10.3390/s23115024
  22. Ullah, A., Anwar, S. M., Li, J., Nadeem, L., Mahmood, T., Rehman, A., & Saba, T. (2023). Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. Complex Intelligent Systems, 10(3), 1607–1637. https://doi.org/10.1007/s40747-023-01175-4
  23. Amović, M., Govedarica, M., Radulović, A., & Janković, I. (2021). Big data in smart city: Management challenges. Applied Sciences, 11(10), 4557. https://doi.org/10.3390/app11104557
  24. Cesario, E. (2023). Big data analytics and smart cities: Applications, challenges, and opportunities. Frontiers in Big Data, 6, 1149402. https://doi.org/10.3389/fdata.2023.1149402
  25. Nuaimi, E. A., Neyadi, H. A., Mohamed, N., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(1), 25. https://doi.org/10.1186/s13174-015-0041-5
  26. Brahim, M. B., Drira, W., Filali, F., & Hamdi, N. (2016). Spatial data extension for Cassandra NoSQL database. Journal of Big Data, 3(1), 11. https://doi.org/10.1186/s40537-016-0045-4
  27. Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a recurrent neural networks based framework. Computer Communications, 199, 113–125. https://doi.org/10.1016/j.comcom.2022.12.010
  28. Xu, H., Sun, Z., Cao, Y., & Bilal, H. (2023). A data-driven approach for intrusion and anomaly detection using automated machine learning for the Internet of Things. Soft Computing, 27, 14469–14481. https://doi.org/10.1007/s00500-023-09037-4
  29. Campos, E. M., Saura, P. F., González-Vidal, A., Hernández-Ramos, J. L., Bernabé, J. B., Baldini, G., & Skarmeta, A. (2022). Evaluating federated learning for intrusion detection in Internet of Things: Review and challenges. Computer Networks, 203, 108661. https://doi.org/10.1016/j.comnet.2021.108661
  30. Hossain, M. A., & Islam, M. S. (2023). Ensuring network security with a robust intrusion detection system using ensemble-based machine learning. Array, 19, 100306. https://doi.org/10.1016/j.array.2023.100306
  31. Disha, R. A., & Waheed, S. (2022). Performance analysis of machine learning models for intrusion detection system using Gini impurity-based weighted random forest (GIWRF) feature selection technique. Cybersecurity, 5, 1. https://doi.org/10.1186/s42400-021-00103-8
  32. Yaras, S., & Dener, M. (2024). IoT-based intrusion detection system using new hybrid deep learning algorithm. Electronics, 13(6), 1053. https://doi.org/10.3390/electronics13061053
  33. Hnamte, V., & Hussain, J. (2023). Dependable intrusion detection system using deep convolutional neural network: A novel framework and performance evaluation approach. Telematics and Informatics Reports, 11, 100077. https://doi.org/10.1016/j.teler.2023.100077
  34. Ashiku, L., & Dagli, C. (2021). Network intrusion detection system using deep learning. Procedia Computer Science, 185, 239–247. https://doi.org/10.1016/j.procs.2021.05.025
  35. Kayode Saheed, Y., Idris Abiodun, A., Misra, S., Kristiansen Holone, M., & Colomo-Palacios, R. (2022). A machine learning-based intrusion detection for detecting Internet of Things network attacks. Alexandria Engineering Journal, 61(12), 9395–9409. https://doi.org/10.1016/j.aej.2022.02.063
  36. Awajan, A. (2023). A novel deep learning-based intrusion detection system for IoT networks. Computers, 12(2), 34. https://doi.org/10.3390/computers12020034
  37. Brahim, M. B., Drira, W., Filali, F., & Hamdi, N. (2016). Spatial data extension for Cassandra NoSQL database. Journal of Big Data, 3(1), 11. https://doi.org/10.1186/s40537-016-0045-4
  38. Alosaimi, S., & Almutairi, S. M. (2023). An intrusion detection system using BoT-IoT. Applied Sciences, 13(9), 5427. https://doi.org/10.3390/app13095427
  39. Logeswari, G., Bose, S., & Thangasamy, A. (2023). An intrusion detection system for SDN using machine learning. Intelligent Automation & Soft Computing, 35(1), 867–880. https://doi.org/10.32604/iasc.2023.026769
  40. Sasi, T., Lashkari, A. H., Lu, R., Xiong, P., & Iqbal, S. (2024). A comprehensive survey on IoT attacks: Taxonomy, detection mechanisms and challenges. Journal of Information and Intelligence, 2(4), 455–513. https://doi.org/10.1016/j.jiixd.2023.12.001
  41. Sabiri, B., Khtira, A., Asri, B. E., & Rhanoui, M. (2024). Investigating contrastive pair learning’s frontiers in supervised, semisupervised, and self-supervised learning. Journal of Imaging, 10(8), 196. https://doi.org/10.3390/jimaging10080196
  42. Qiu, L., Jin, L., & Chai, L. (2023). Network traffic prediction based on spatio-temporal graph convolutional network. In Proceedings of the 2023 42nd Chinese Control Conference (CCC) (pp. 8426–8431). IEEE. https://doi.org/10.23919/CCC58697.2023.10239918
  43. Park, J., Park, Y., & Kim, C. I. (2022). TCAE: Temporal convolutional autoencoders for time series anomaly detection. In Proceedings of the 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 421–426). IEEE. https://doi.org/10.1109/ICUFN55119.2022.9829692
  44. Zhao, Z., & Chen, M. (2024). Time series anomaly detection and prediction model integrating multimodal data. In Proceedings of the 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS) (pp. 1–5). IEEE. https://doi.org/10.1109/IACIS61494.2024.10721738